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Abstract- For marketers and sales professionals, estimating price elasticities of their products is crucial for understanding 

sales and setting pricing strategies. Yet, given the variety of possible econometric models, the central question that arises as 

which one of them would be the most appropriate for elasticity measurement. This paper conducts a comprehensive empirical 

study of 104 weeks of sales (January 2016 to December 2017) for 340 Hair Care products sold in 11 retailers. Our first 

findings show that considering breakpoints and outliers ahead of using any econometric model significantly improves the 

output from the classical and most widely used models such as Ordinary Least Squares (OLS) and Quantile Regressions 

(QR). Moreover, we present two other innovative models, Quantile on Quantile Regression (QQR) and Gravity Center 

Regression (GCR) which could further eliminate the measurement bias given limited or even aggregated data and, assist with 

the marketing decision making processes. 
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1. INTRODUCTION 

In Economics, the law of demand tells us that there is a 

negative relationship between prices and quantities sold, 

i.e., the demand function is downward sloping. Moreover, 

there are two competing affects that influence the sellers’ 
decision to increase (decrease) prices. When prices 

increase, the sellers’ revenue increase due to the fact that 

each unit sold has a higher price (price effect). However, 

after a price increase, consumers could decide to purchase 

less, which will drive the revenue down (quantity effect). 

These two effects work against each other causing total 

revenue volatility and uncertainty. To determine which 

effect outweighs the other, people look at measures such 

as price elasticities that measure the responsiveness of 

unit sales to the changes of their corresponding prices. 

Recall that price elasticities simply measure the 

percentage change in unit sales given a small percentage 
change in prices.  

Price elasticities play a central role in marketers and sale 

professionals’ decision-making processes. They use these 

elasticities to determine their marketing campaigns and 

sales strategies, among other very important decisions.  

In general, the demand for a good can either be elastic, 

inelastic or unit elastic. An elastic product is one which 

elasticity is smaller than -11 or greater than 1 in absolute 

                                                             
* We would like to thank Prof. Dominick Salvatore, 
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values. In this case, a 1% increase in price will result in a 

more than 1 percent decrease in quantity sold; i.e., the 

quantity effect is stronger than the price effect. Under this 

circumstance, increasing price drag total revenue down. 

In another hand, inelastic products have a lower 

responsiveness to increases on their prices with price 

elasticities larger than -1 (or smaller than 1 in absolute 

value). E.g. a 1% increase in price results in a less than 

1% decrease in quantity sold. In this last case, the price 

effect outweighs the quantity effect and a price increase 
could push the total revenue to go higher. Elasticity of 

Everyday Retail Price (EDRP) is used to set price 

strategies that help corporations increase sales, market 

share or profits, and ideally, all three. 

In real life however, with aggregated data across multiple 

dataclasses (defined as unique retailer/product 

combinations), it is inevitable to estimate abnormally 

large and even positive elasticities (Blattberg and George, 

1991)[1], which violate the law of demand.2 These results 

can be explained in different ways. For example, a single 

outlier could drive the real effect far away from its 
unbiased value and completely confuse the analysis that 

comes after; another data characteristic that 

                                                                                                   
1 Recall that as soon as the demand function has a 

negative slope, the expected (theoretical) price elasticity 

should be negative. 
2 One other practical matter maybe worth mentioning is 

that for CPG/FMCG products often there are no more 

than 120 weeks available, which makes time series 

vulnerable to outliers if there are only a few shifts in 

EDRP. 
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contributes with erroneous estimates is the presence of 

structural changes (for example permanent changes in the 

EDRPs3) in the sample period. In these cases, and before 

applying any econometric model to estimate the 

elasticities, one should use a model to capture the breaks 

(effectively creating one -or more- subsamples).  
Additionally, elasticities vary within different price 

ranges. In this sense, elasticities should be stronger when 

prices are higher (respect to competition or other metrics 

like percentage of clients’ income, among others) since 

customers should be more sensitive for price shifts in a 

high-price region as opposed to price changes in a low-

price region. Thus, using one single elasticity as a hint for 

EDRPs could provide misleading information used in 

marketing strategy decisions. 

In an attempt to solve for the above-mentioned problems 

and improve measurement accuracy, in this paper we use 

four different approaches to estimate price elasticities: 
Ordinary Least Squares (OLS), Quantile Regression 

(QR), Quantile on Quantile Regression (QQR) and 

Gravity Center Regression (GCR). As we show, by 

simply applying a breakpoint and outlier detection model 

ahead improves the output from all econometrics’ models 

when doing elasticity analysis. In addition, and in order to 

capture the potentially different dynamics of elasticities 

depending on high or low relative prices, we use Quantile 

Regression (QR) model to find elasticity estimates that 

correspond to different quantity levels and then, Quantile 

on Quantile Regression (QQR) model to capture the 
varying dependence structure that the different quantiles 

of price changes have on the different quantiles of 

quantity. Finally, we use a Gravity Center Regression 

(GCR) model, based on partial moment theory, to 

partition the joint distribution and create clusters that are 

hierarchical and partitional. By construction, GCR is the 

only model that always follows the law of demand theory, 

since it only uses data that falls in the II and IV quadrants 

of the partial moments of the data at hand. 

Studies related to this paper are few. The most relevant 

work comes from Blattberg & George (1991)[1] and 

Montgomery (1997)[5]. Aiming to obtaining a robust 
price elasticities with respect to OLS model, these 

scholars apply Gibbs’ sampling approach to estimate the 

parameters in a Hierarchical Bayesian Regression model. 

Blattberg & George (1991)[1] used data on four bathroom 

tissue brands from three store chains and applied a 

shrinkage procedure based on empirical Bayes and 

hierarchical Bayes to shrink the chain-brand level OLS 

estimates toward a grand mean to avoid nonsensical 

estimates (positive elasticities). The limitation of this 

approach is that one needs three constraints before 

applying this model: the expected value of elasticity 
(regression coefficient) should be equal overall, equal 

across brands and equal across chains.  

                                                             
3
 EDRP (Everyday Retail Prices) are those prices that do 

not have any promotional activities incorporated, i.e. is 

the price in the absence of any promotions. 

In a similar study Montgomery (1997)[5] focused on 

micro-marketing strategies by estimating store-level 

demand elasticity. He used a larger dataset containing 11 

brands of refrigerated orange juice from 83 stores. Instead 

of assuming homogeneous stores, in his paper, the 

heterogeneous store level parameters were considered as a 
combination of chain level and store specific effects. 

Montgomery (1997)[5] include a new parameter 

(“demographic predictor”) to link to the store specific 

heterogeneous characteristics to estimate cross-store 

estimates that are then shrunk toward a regression line4. 

Even though all these researches show that elasticities 

estimated based on Gibbs sampling approach in a 

hierarchical Bayesian framework can yield better results 

and provide more stable measurement than conventional 

ordinary least squares (OLS) approach, their approach 

takes the form of a single conditional mean equation 

based on resampling result and as such fails to catch the 
dynamic changes of elasticity measures in each the 

overall price range. It is precisely the problem of static 

elasticity (or unique elasticity coefficient) that led us 

towards the use of novel models, such as QR and QQR 

approach that are used in this paper to trace elasticity 

dynamics under different price specifications. An 

extensive search of the quantitative marketing and 

econometric literature leads us to believe that our research 

provides the first complete set of elasticity model testing 

using the aforementioned econometric models.  

Our findings are useful for marketing decisions by 

suggesting elasticities that are not only better estimated by 
capturing a more complete dependence structure between 

prices and quantities. Although other factors, such as 

substitutes (alternative choices), consumer income effect 

(proportion of a family’s income) and different time 

horizon (long-term versus short-term effect), also 

contribute to elasticity variation, the primary aim of this 

paper is to focus on price elasticity measurement and 

model comparison with different type of econometric 

analysis. Even though the techniques presented here can 

potentially be applied to other scenarios as will become 

clear throughout the paper. 
The rest of the paper is organized as follows. In the next 

section we provide a brief overview of elasticity 

definition and its relationship with total revenues. In 

section 3, we introduce four econometrics models that we 

use in this paper, Ordinary Least Squares (OLS), Quantile 

                                                             
4 Indeed, Montgomery (1997) is very similar to Blattberg 

and George (1991) paper. However, Blattberg and George 

(1991) assume that the expected value of elasticity 

(regression coefficient) should be equal overall, equal 

across brands and equal across chains. Montgomery paper 
highlights firm heterogeneous property by using a new 

demographic variable to show store differences using 

several variables like latitude, near highway, and so on. 

Then they propose a marketing strategy based on each 

specific store. 
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Regression (QR), Quantile on Quantile Regression (QQR) and Gravity Center Regression 

(GCR) and, explain the outlier and structural break effects 

on elasticities. The results of our modeling efforts are then 

presented and discussed followed with conclusions 

pertaining to future work. 

2. PRICE ELASTICITY 

In this section we briefly describe price elasticity, discuss 

its relationship with total revenues and demonstrate how 

this measure informs better marketing decisions.  

2.1 What is Price Elasticity? 
Price elasticity5 measures the changes in demand for a 

product in reaction to the changes of that product’s price 

(keeping constant all the other variables that affect the 

demand function). Mathematically: 

ε =

dQ

Q
dP

P

 =  
dlnQ

dlnP
 # (1)                                                                  

Where ε is the price elasticity of demand, Q is the 

quantity demanded and P represents the selling price. 

After collecting the prices and quantities (𝑃, 𝑄), we can 

obtain the demand elasticity through a regression 

function6: 

lnQ = a + blnP + e # (2)  
Thus, the slope term (b) is an estimate of the price 

elasticity (ε) of the demand curve.7 The errors 𝑒 are 

assumed to be i.i.d. From equation (1) above, it is clear 

that 𝜀 should be negative given the law of demand and, 

both analytical and empirical results confirm this. When 

the absolute value of this ratio is greater than one, the 

product is elastic, and demand declines more as price 

increases. In another hand, with an absolute value of 𝜀 
less than one, the demand for a product does change but 

proportionally less than the percentage change in price.  

2.2 The Relationship Between Elasticity 

Demand and Total Revenue 
The mathematical link between total revenue and 

elasticity comes from the price elasticity of demand 

                                                             
5 In this paper we are focusing our efforts is EDRP 

elasticities. 
6 Indeed, elasticity is a static concept measured around a 
current EDRP. In equilibrium (considering prices of all 

complement and substitute products and other 

economic/behavioral characteristics of buyers as well as 

other supply considerations, all comparable products 

should have the same price with unit elasticity (elasticity 

of -1). I.e. all producers or sellers maximize their 

revenues and at this EDRP point (the steady state) there is 

no incentive to permanently move the prices. 
7 To see this, taking the derivative of equation 

(2): 
𝑑(𝑙𝑛𝑄)

𝑑(𝑙𝑛𝑃)
=

𝑑𝑄

𝑄
𝑑𝑃

𝑃

= 𝑏.  Note that the formula for 𝑏 is the 

same as the one for the elasticity (ε). Thus, the coefficient 

𝑏 represents the price elasticity. 

formula presented in Equation (1). Since the total revenue 

is given by 

 

TR = P × Q = P × f(P)# (3)  
 

Figure 1: Relationship between elasticity demand and 

total revenue. Note: with unit elastic corresponding to the 

middle of the demand curve, everything to the left is 

inelastic and everything to the right is elastic. Revenue is 

maximized at the point where elasticity is unit elastic. 

 

 

 

 
dTR

dP
= Q + f ′(P) × P = Q (1 + f ′(P) ×

P

Q
 ) = Q (1 +

dQ

dP 
×

P

Q
) =  Q(1 + ε)# (4) 

 

Where quantity demanded Q is a function of price P.  

Therefore, Where ε represents the price elasticity. If 

demand is elastic (ε < −1) then 
dTR

dP
< 0. In this case, 

price and total revenue move in opposite directions. 
This means that when we decrease prices, the total 

revenues increase. If instead, demand is inelastic (𝜀 >

−1) then 
𝑑𝑇𝑅

𝑑𝑃
> 0: price and total revenue change in the 

same direction. Higher revenue could be obtained by 

pushing up the prices. If demand is unit elastic (𝜀 = −1), 

then an increase in price has no influence on the total 

revenue.
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3. DATA AND METHODOLOGY 

We employ 104 weeks of sales for 340 products from 11 

retailers.8 The sample period extends from January 2016 

to December 2017 with total number of 219,024 

observations for each variable (prices and units sold). We 

apply four econometric models to a total of 2106 

(219,024/104) Dataclasses. 

Before running our regression, we first clean our dataset 

by eliminating NAN, INF or missing price or quantity 

records. This reduces the sample size for each good but 

provides more robust results. We compute log price (𝑙𝑛𝑃) 

and quantity (𝑙𝑛𝑄) to achieve elasticity directly. With 

limited and aggregated data, it is sometimes inevitable to 

obtain biased elasticity result due to several small sample 

issues that we introduce in next sections. We then discuss 

how to eliminate these biased results with the use of 

different models and cleaning or adjustment procedures. 

3.1 Ordinary Least Squares (OLS) with 

Outliers and/or Breakpoints 
The ordinary least squares model is the easiest and most 

used model in applied demand elasticity analysis. We take 

𝑙𝑛𝑃 as our independent variable and 𝑙𝑛𝑄 as dependent 

variable, 𝑙𝑛 stands for the natural logarithm, and run 
linear regression with:  

𝑙𝑛𝑄 = 𝑎 + 𝑏𝑙𝑛𝑃 + 𝑒 #(5)
Based on the sign of the coefficient 𝑏, we then test for the 

presence of outliers and/or breakpoints that could be 

present in the data. For example, abnormal positive price 

elasticity (𝑏 > 0) could be caused by outliers or structural 

breaks. Of course, one can perform this analysis before 

running the regression. However, with limited analysis 

information and the large number of products performing 
the analysis one by one would imply the use of significant 

human capital and technical resources. In this paper, we 

test for all scenarios with 1) breakpoint and outlier; 2) 

breakpoint only; 3) outlier only; 4) no breakpoint or 

outlier. 

An example of a product with a structural break is shown 

in Figure 29. The reason we get a strict positive slope 

(𝑏 = 1.0021) in this case is because there is a structural 

change in our dataset found on the quantity sold.  

 
Figure 2: OLS result ignores structure break effect, 

estimated elasticity equals to 1.0021. Note: the black dots 

are (lnP, lnQ) pairs. lnP is shown on the x-axis and lnQ is 

shown on the y-axis; regression line showed in blue and, 

the grey shadow represents the range under 95% 

confidence interval. 

                                                             
8 Ahold, CVS, Kmart, Kroger, Meijer, Publix, Rite Aid, 

Southeastern Grocers, Wakefern, Walgreens and 

Walmart.  
9
 For product AOB_BAS_DRYSHM_05.0OZ from 

retailer Ahold Corp 

 
 

Based on the positive sign of the elasticity coefficient (β), 

we then apply the R package “breakpoint package” to 

detect and obtain the position(s) of the break point(s).  

The breakpoint method implements variants of the Cross-

Entropy (CE) method proposed in Priyadarshana and 

Sofronov (2012, 2015)[6][7] which is a model-based 

stochastic optimization procedure to obtain the estimates 

on both the number and the corresponding locations of the 
breakpoints in biological sequences of continuous and 

discrete measurements.  

In our dataset we have found a maximum of only one 

break point (in the first week in 2017) based on 𝑙𝑛𝑄. 

However, the procedure is able to capture more break 

points. Once this is considered we apply OLS regression 

equation with one dummy variable 𝑑1 that equals 1 for 

observations before break point (included) and 0 

otherwise. Thus, our regression function becomes:  

𝑙𝑛𝑄 = 𝑎 + 𝛽1𝑙𝑛𝑃 + 𝛽2𝑑1 +
𝛽3𝑑1𝑙𝑛𝑃 + 𝑒  (6)  

Where 𝑑1 is the dummy variable described before. Note 

that Equation (6) is able to track not only changes in the 

y-intercept but also changes in the slope (elasticity) 

coefficients. 

One problem with our dataset is that after adding the 

dummy variable, for some certain products, we enter into 

multi-collinearity problem in a linear regression function. 

When this happens, we try regression function 𝑙𝑛𝑄 = 𝑎 +

𝛽1𝑙𝑛𝑃 + 𝛽2𝑑1 + 𝑒10 instead or, use equation (5) if multi-

collinearity problem still exists. In all cases we analyze 

the final elasticity estimates and look for its economic 

soundness. In the example presented in Figure 2, the 

structure break happened on the 53th observation11  

(1/8/2017), from where sales increased a lot thereafter. 

We apply OLS again including dummy variable this time 

                                                             
10 For certain products, we arrive multi-collinearity 

problem due to limited dataset size. Instead of trying 

regression function lnQ = a + β1lnP + β2d1lnP + e we 

use lnQ = a + β1lnP + β2d1 + e. 
11 Data available upon request. 
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to distinguish the different effect. The fitted lines are 

presented in Figure 3. 

 

We get elasticity equals to -1.348 before the breaking 

point (blue line) and -0.8682 after the breaking point (red 

line). Both elasticities conform to the law of demand and 

improve a lot from previous result (slope 𝑏 = 1.0021) 
estimated using the one-period OLS model. The 

difference between Figures 2 and 3 highlight a significant 

challenge for this aggregated data, namely Simpson’s 

paradox presented in Simpson (1951) whereby trends are 

present in individual groups of data (product data for 

specific retailer locations), yet reverse when combined 
(overall product data for each of the 11 retailers). 

 
Figure 3: OLS result that considers one structural break. Separate dataset into two subsets from 1/8/2017, 

regression fit for data happened before 1/8/2017 show in blue and red if after. Estimated elasticities equal to -1.348 

(before) and -0.8682 (after). 
 

 
Figure 4: OLS (with and without structural break) estimation for 𝑙𝑛𝑄. The breakpoint is observed at the 53th observation (x-

axis) in the first week in January 2017 (1/8/2017), where 𝑙𝑛𝑄 equals to 7.57 (y-axis; quantity sold in this week is 1948 

unites). 

Figure 4 provides a better sense in terms of model fit 

using the structural breaks approach and without it. We 

see 𝑙𝑛𝑄 fitted with break (red line) follows the original 

𝑙𝑛𝑄 (black line) closely, while the estimated 𝑙𝑛𝑄 based 

on regular OLS equation (blue line) missed the data 

behavior completely. 

After dealing with break points potentially found in the 

data, there still remains to verify whether there are some 

outliers. I.e. a dataset can have both outlier and structure 

break problem or simply outlier issues.  

To deal with outliers, we exclude the data that fall below 
the 0.05th percentile. This percentile can be adjusted in a 

case by case basis. However, in general this percentile 

appears to do a good work. Another way to solve this 

problem is to set up a 
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threshold point and adjust the lower and upper data values 

accordingly.  A good visualization of this effect can be 

seen in Figure 5 with another product12 that having outlier 

problem. 

(a) OLS result before adjusting for outliers’ effect, 

estimated elasticity equals to 7.908 
 

 
 

(b) OLS result after adjusting outliers’ effect, estimated 

elasticity equals to -2.10. 

 

 
 
Figure 5: Comparisons of the OLS results for (a) whole 

dataset, (b) excluded outliers. 

 

The main reason we get a positive elasticity result 

(𝑏 = 7.908) in Figure 5(a) is because a single observation 

located in the left bottom part of figure drives the real 

relationship between 𝑙𝑛𝑄 and 𝑙𝑛𝑃 far away from the most 

likely best fit line.  

In this case, beside the left bottom point, the other two 

black dots should also be counted as outliers. Since it 
diverges away from the cluster group13.  

After we exclude outliers, we can zoom in the cluster and 

uncover the real effect between these two variables. As 

                                                             
12

 For product AOB_BAS_SHCO_30.0-39.9OZ from 

retailer Ahold Corp.  
13

 For certain products in our datasets, mainly those new 

or discontinued ones, where there is a large number of 

weeks with no sales, we first eliminate these weeks and 

then apply the benchmark to find outliers.  

shown in Figure 5 (b), with updated dataset, we get the 

price demand elasticity equals to -2.1, which is closer to 

the real value.  

3.2 Quantile Regression (QR) with Outliers 

and/or Breakpoints 
Koenker and Bassett (1978) come up with quantile 

regression (QR) approach to model conditional quantile 

based on a dependent variable. The objective function in 

the QR approach is to minimize a weighted sum of the 

absolute value of residuals. In mathematical form, the 𝑝𝑡ℎ 

quantile estimators for (𝛼𝑝 , 𝛽𝑝) are chosen to:  

 

 𝑚𝑖𝑛𝛼𝑝 ,𝛽𝑝
∑ 𝑑𝑝(𝑦𝑖  , 𝑦𝑖̂ )

𝑛

𝑖=1

=  𝑚𝑖𝑛𝛼𝑝 ,𝛽𝑝
∑ 𝜌

𝑛

𝑖=1

𝑝 (𝑦𝑖 − 𝛼𝑝 − 𝑥𝑖
′𝛽𝑝) 

= 𝑚𝑖𝑛𝛼𝑝 ,𝛽𝑝
{𝑝 ∑ |𝑦𝑖 − 𝛼𝑝 − 𝑥𝑖

′𝛽𝑝|

𝑁

𝑖:𝑦𝑖≥𝛼𝑝+𝑥𝑖
′𝛽𝑝

+ (1 − 𝑝) ∑ |𝑦𝑖 − 𝛼𝑝 − 𝑥𝑖
′𝛽𝑝|

𝑁

𝑖:𝑦𝑖≤𝛼𝑝+𝑥𝑖
′𝛽𝑝

} #(7) 

 

Applying the outlier and break points detection processes 

before performing the quantile regression analysis allows 

us to obtain better elasticity estimates. Using the same 

data14 with breaks from the previous section, we can see 
in Figure 6 (a) that the positive lines in are biased output 

result from QR regression. Whereas after splitting the 

dataset into two parts based on the OLS break point 

estimates, the output significantly improved as seen in 

Figure 6 (b). For each dataset, we then split 𝑙𝑛𝑄 into 

different quantiles (0.2, 0.4, 0.6, 0.8). The blue lines 

present the estimated elasticity before break (dataset 

before 1/8/2017) in different 𝑙𝑛𝑄 quantile ranges and the 

red lines present the results in after break dataset. 

Coefficient results show in Table 1. At this time, elasticity 
in each quantile range has significantly improved. 

(a) Quantile regression results before adjusting the 

structure break’s effect. 

 

 
 

 

Figure 6: Comparisons of the quantile regression results 

for (a) before adjusting the structure break’s effect, (b) 

after adjusting the structure break’s effect. 

                                                             
14

 For product AOB_BAS_DRYSHM_05.0OZ from 

retailer Ahold Corp. 
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(b) Quantile regression results after adjusting the structure 

break’s effect. This table provides the coefficient 
estimates from the quantile regression approach. If we 

ignore structure break effect, the model returns all 

positive elasticities within each quantile. However, after 

considering structural breaks effect, QR reflects all 

negative results for data within each range which follows 
the law of demand. Note: the breakpoint is observed in 

the first week in January 2017 (the 53th observation, 

1/8/2017).

 

Table 1: Quantile Regression Coefficients (Elasticity) 

Coefficient  Tau 0.2 Tau 0.4 Tau 0.6 Tau 0.8 Coefficient  Tau 0.2 Tau 0.4 Tau 0.6 Tau 0.8 

Whole Dataset  0.2555   0.4638   1.3753   0.5456  Before Break -0.9971 -1.0608 -1.5319 -1.6291 

          After Break -0.5932 -0.5909 -1.1461 -0.9912 

3.3 Quantile on Quantile Regression (QQR) 
Traditional econometric models like OLS or threshold 

linear regression model can only consider certain 

relationships under average conditions and are not able to 

consider certain extreme events, neglecting in this way 

broader economic interactions. Alternatively, Quantile on 

quantile regression approach studies the joint co-

movement between each different pair of (𝑥, 𝑦). In our 

case, QQR approach is the only model that traces the 

elasticity changes given every different price and quantity 

combination. To be specific, instead of achieving one 
single elasticity result as from OLS, with QQR we can get 

an 𝑛 × 𝑛 elasticity matrix based on 𝑛 × 𝑛 different scales 

of price and quantity combinations. Given sufficiently 

large datasets, QQR model could uncover dynamic 

changes of elasticity and provide more valuable insights 

into market-promoting strategies for marketers and sale 

professionals. 

Sim and Zhou (2015)[11] proposed quantile on quantile 

regression approach through the combination of quantile 

regression and local linear regression with first order 

Taylor expansion to express the dependency between 
different quantiles of dependent variable and different 

quantiles of explanatory variables. In this paper, we apply 

Sim and Zhou (2015)[11] QQR approach and update the 

QR equation accordingly. 

In a regular QR equation, our regression function can be 

expressed as: 𝑙𝑛𝑄𝑡
𝜃 = 𝛼0

𝜃 + 𝛽𝜃(𝑙𝑛𝑃𝑡 ) + 𝜀𝑡
𝜃 #(8) 

 

Where 𝜀𝑡
𝜃 is an error term in 𝜃-quantile. We allow the 

relationship function 𝛽𝜃(∙) to be unknown since we do 
not know about the way elasticity changes with different 

prices and quantity pairs. We then linearize the function 

𝛽𝜃(∙) by taking its first order Taylor expansion around 𝜏-

quantile of 𝑙𝑛𝑃 to explore the link between the 𝜃-quantile 

of 𝑙𝑛𝑄 and 𝜏-quantile of 𝑙𝑛𝑃. With this we 

have: 𝛽𝜃(𝑙𝑛𝑃𝑡) ≈ 𝛽𝜃(𝑙𝑛𝑃𝜏) + 𝛽𝜃′
(𝑙𝑛𝑃𝜏)(𝑙𝑛𝑃𝑡 −

𝑙𝑛𝑃𝜏)#(9) 

 

Redefining 𝛽𝜃(𝑙𝑛𝑃𝜏) as 𝛽0(𝜃, 𝜏) and 𝛽𝜃′
(𝑙𝑛𝑃𝜏) as 

𝛽1(𝜃, 𝜏), equation (9) becomes: 
𝛽𝜃(𝑙𝑛𝑃𝑡) ≈ 𝛽0(𝜃, 𝜏) + 𝛽1(𝜃, 𝜏)(𝑙𝑛𝑃𝑡 − 𝑙𝑛𝑃𝜏)#(10)  

 

Substituting equation (10) into equation (8) to obtain the 

following: 𝑙𝑛𝑄𝑡
𝜃 = 𝛼0

𝜃 + 𝛽0(𝜃, 𝜏) + 𝛽1(𝜃, 𝜏)(𝑙𝑛𝑃𝑡 −

𝑙𝑛𝑃𝜏) + 𝜀𝑡
𝜃#(11) 

 

Since 𝛽0 and 𝛽1 are doubly indexed in (𝜃, 𝜏) in equation 

(10), we now can analyze the whole joint co-movement 

distribution under each 𝜃-quantile of 𝑙𝑛𝑄 given a 

different 𝜏-quantile of 𝑙𝑛𝑃. 

We employ a Gaussian kernel 𝐾(∙) function to weight the 

observations in the neighborhood of 𝑙𝑛𝑃𝜏, based on 

bandwidth h (we use 0.05 as recommended in Sim and 

Zhou (2005)). Therefore, the objective function to get 

quantile on quantile coefficient is:  

(𝛼̂, 𝛽̂) =  𝑎𝑟𝑔𝑚𝑖𝑛𝛼,𝛽 ∑ (𝑙𝑛𝑄𝑡
𝜃 − (𝛼0

𝜃 + 𝛽0(𝜃, 𝜏) + 𝛽1(𝜃, 𝜏)(𝑙𝑛𝑃𝑡 − 𝑙𝑛𝑃𝜏))) 𝐾 (
𝐹𝑛(𝑙𝑛𝑃𝑡) − 𝜏 

ℎ
)

𝑛

𝑡=1

#(12)  
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Where 𝐹𝑛(𝑙𝑛𝑃𝑡) =
1

𝑛
∑ 𝐼(𝑙𝑛𝑃𝑘 < 𝑙𝑛𝑃𝜏)𝑛

𝑘=1 , 𝐼(∙) is an 

indicator function and 𝐾(𝑧) = (2𝜋)−0.5𝑒−𝑧2/2   
In consistent with previous methodology, we detect 

outliers first and use the clean dataset to apply QQR 

approach. One benefit for using QQR is its inherent 

character for catching the structure break affect, 

considering it can fully capture the joint relation between 

two examined variables under each point of their 

respective distribution.  

In this paper, limited observations per product (104 

aggregated weekly observations), if there is no data 

falling in certain regions of the space of price and quantity 

combinations, we set the elasticity in that region to be 

zero to obtain robust results and easy to interpret graphs. 
We also exclude positive elasticity results from the output 

matrix since these are noises in QQR model.  

3.4 Gravity Center Regression (GCR) 
Gravity Center Regression is based on Nonlinear 

Nonparametric Statistics (NNS) and was developed by 

one of the authors. Using partial moments, we can 
partition the joint distribution of the data and create 

clusters that are hierarchical and partitional. By restricting 

the clusters to known elasticity properties (like negativity) 

in the upper left (Divergent Upper Partial Moment - 

DUPM) and lower right (Divergent Lower Partial 

Moment -DLPM) quadrants, we can estimate the true 

underlying elasticity signal in the aggregated noisy series. 

For example, below is a visualization of the first order 

partitioning whereby most of the observations are in the 

DUPM and DLPM quadrant. This is consistent with a 

negative correlation coefficient as described in Viole and 
Nawrocki (2012)[14]. 

 
Figure 7: GCR approach for NNS partition of joint distribution. 

The diverging lower partial moment (𝐷𝐿𝑃𝑀) and 

diverging upper partial moment (𝐷𝑈𝑃𝑀) matrices are 

defined by: 

𝐷𝐿𝑃𝑀(𝑛, ℎ, 𝑥|𝑦) =  
1

𝑇
[∑(𝑚𝑎𝑥{𝑥𝑡 − ℎ, 0}𝑛 ∙ 𝑚𝑎𝑥{0, ℎ − 𝑦𝑡}𝑛)

𝑇

𝑡=1

]                          (13) 

𝐷𝑈𝑃𝑀(𝑛, ℎ, 𝑥|𝑦) =  
1

𝑇
[∑(𝑚𝑎𝑥{0, ℎ − 𝑥𝑡}𝑛 ∙ 𝑚𝑎𝑥{𝑦𝑡 − ℎ, 0}𝑛)

𝑇

𝑡=1

]                         (14) 

Equation (13) provides the divergent lower partial 

moment for variable Y given a positive target deviation 

for variable X from shared target h, with the degree (n). 

When 𝑛 = 0, the partial moment matrices are a frequency 

statistic, while 𝑛 = 1 is an area-based statistic. When the 

degree 1 divergent partial moment matrices are combined 

with the complement matrices of co-partial moments 

(CUPM and CLPM representing upper right and lower 
left quadrants respectively), we can recover the 

covariance between two variables. 

The means of the resulting partial moment quadrants 

serve as the representative cluster for those member 

observations. These means (or other central tendency 

statistic such as medians or mode) serve as the basis of a 

nonlinear regression as described in Vinod and Viole 

(2017)[13].  However, in this application of elasticity, we 

are concerned with the overall coefficient, not the local 

coefficients Gravity Center Regression returns.  Thus, we 

perform a simple linear regression on the partial moment 

clusters for our analysis.  

Applying the outlier and break points detection processes 

ahead can further improve GCR output. Follow the same 
outlier example as we presented in Figure 5, Figure 8 (a) 

and (b) plot out the GCR results with and without outliers 

respectively. If outliers are included in the sample data, 
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we achieve a negative slope (𝑏 = −26.89) with GCR approach compared with OLS 

positive result (𝑏 = 7.908). After removing several 

outliers, we achieve a negative slope (𝑏 = −2.635), 

which is close to the OLS approach without outliers 

(𝑏 = −2.1). Once more, note the importance of removing 

outliers before applying any model.  

 
(a) GCR result before eliminating outliers. Estimated elasticity equals to -26.89. 

 
(b) GCR result after eliminating the outliers. Estimated elasticity equals -2.635. 

Figure 8: GCR results comparisons for (a) including 

outliers, (b) excluding outliers; Note: the large pink dots 

are the pairs of (𝑙𝑛𝑃, 𝑙𝑛𝑄) obtained from the Divergent-
Partial Moments: DUPM and DLPM quadrants; red dots 

are the pairs obtained from the Co-Partial Moments: 

CUPM and CLPM quadrants. The blue dots are the 

(𝑙𝑛𝑃, 𝑙𝑛𝑄) pairs from our dataset after iteration and the 
blue line is the best fitting line (GCR regression line). 

4. MODEL COMPARISON AND THE 

EMPIRICAL RESULTS 

With 219,024 observations corresponding to 104 weeks 

(January 2016 to December 2017) for 340 Hair Care 

products sold in 11 retail stores, we apply OLS (Ordinary 

least squares), QR (quantile regression) and, thereafter 

QQR (Quantile on quantile regression) and GCR (Gravity 

Center Regression) approaches, conduct model 

comparison and result analysis, respectively. In this 

section we use a single product sold at Ahold Corp15 as an 

                                                             
15

 For product CRS_BAS_BDWS_13.5OZ from retailer 

Ahold Corp, aggregated from all of its locations.  

example to present our findings and compare the results 

of the different models used. 

4.1 Ordinary Least Squares (OLS) and 

Quantile Regression (QR) Comparison 
The OLS model presented in Equation (2) represents the 

change in the conditional mean of the dependent variable 

(𝑙𝑛𝑄) associated with a change in the explanatory variable 

(𝑙𝑛𝑃). Even though this model provides good fit to well 

behaved data like the one presented in Figure 7, it 

provides an incomplete picture and might underestimate 

the effect of the covariates under extreme conditions (data 

with different EDRP regimes, outliers, among others).  
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Unlike the OLS model estimates, the QR improves the 

results by providing an 𝑛 × 1 output that captures the 

change of elasticity based on different quantiles of the 

dependent variable (𝑙𝑛𝑄). For a better sense of the 

difference between OLS and QR model, with 𝑙𝑛𝑃 on the 

x-axis and 𝑙𝑛𝑄 on the y-axis, Figure 9 plots the results 

from these two models together.  

 
(a) OLS and QR coefficient results. 

 
(b) OLS and QR coefficient results under 95% confidence interval. 

Figure 9: OLS and QR coefficient results. (a) Regression 

result from OLS conditional mean (red), QR conditional 

median (blue) and QR quantile fit (black); (b) coefficient 

from OLS model (red) and QR (black) under 95% 

confidence interval (OLS show in dashed-red lines; QR 

show in black color). 

The grey lines in Figure 9 (a) represent the quantile fit 

based on 𝑙𝑛𝑄 in quantile 0.05, 0.25, 0.75, and 0.95 

respectively; the red line shows the OLS conditional mean 
regression and the blue line is quantile regression based 

on conditional median. 

Each black dot in Figure 9 (b) represents the estimated 

value of the elasticity coefficient for each of 𝑙𝑛𝑄’s 

percentile presented on x-axis. The grey shadow reflects 

the elasticity range within the percentile along with its 

95% confidence level. The red line shows the OLS 

elasticity estimate with 95% confidence level (dashed-red 

lines).  

Even though both OLS and QR provide negative elasticity 

results for this particular product, one can see that OLS 

conditional mean results significantly diverge from the 

ones estimated considering different percentile of unit 

sales (𝑙𝑛𝑄). The differences are larger under extreme 
conditions (lower percentile, Figure 9 (b)). Based on the 

QR output, the absolute value of price demand elasticity 

is higher when quantity is low (around -3) and decreases 

gradually when quantity increases (less elastic). Meaning, 

OLS could only reflect partial information to this case and 
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special care needs to be taken since by far this model is the most widely used model in the industry. 

4.2 Quantile Regression (QR) and Quantile 

on Quantile Regression (QQR) 

Comparison 
Even though QR improves the elasticity estimates and 

provides richer results based on different quantiles of the 

dependent variable, the QR model only considers the 

dependent variable in different percentiles for all price 

levels, i.e. it does not

consider the varying effect of the independent variable 
(prices). In other words, the QR model assumes that the 

elasticity is constant for all prices (𝑙𝑛𝑃) given 𝑙𝑛𝑄 

percentile (elasticity is a straight line under each 

percentile of 𝑙𝑛𝑄). QR approach assumes that a one 

percent adjustment in prices is the same when current 

prices are low as well as when current prices are high, 

which is obviously not true. QQR model fills in this gap 

by considering the impact of different percentile price 

changes on the units sold according to their current price 

levels, i.e. a percentage change in prices when current 
prices are low has a different impact compared to an 

environment where the current prices are already high16. It 

is important to note that the results from QQR model is 

consistent with QR ones whenever the datasets are large.  

We apply the QQR to the same product used before. The 

results are presented in Figure 1017 with 𝑙𝑛𝑃 on the x-axis 

and 𝑙𝑛𝑄 on the y-axis. According to this figure, the 

product is more elastic when price is high (bottom right 

part) and relatively less elastic when price is low (upper 

left part). Also note that the highest unit sales (in terms of 

𝑙𝑛𝑄 in the y-axis) are those that correspond to lower 

prices, this is concordant with what is stablished by 

demand theory. This simply means that the product is 

more inelastic when the starting price (that could be 

current prices) are low, meanwhile when the price is 

already high, the product is more elastic and thus, changes 

in prices under this scenario have a more significant 

impact on unit sales.  

 
Figure 10: QQR coefficient results; quantiles of 𝑙𝑛𝑃 is 

shown on the x-axis and quantiles of 𝑙𝑛𝑄 is shown on the 

y-axis. Dark red shows regions with no data; light blue 

                                                             
16

 We define low and high prices in reference to the 

product’s own price dynamics. However, one can also 

think of low or high price relative to a substitute or 

complementary product. 
17

 Note that what we get from the QQR model is almost 

identical to the results obtained with the QR more.  

represent elasticities at around -2 and, dark blue, 
elasticities in the -3 neighborhood. 

From Figure 10, it is clear that the QQR results are 

consistent with QR findings. It is also interesting to note 

that the “trend” of the elasticity coefficients is increasing 

with price decreasing, satisfies the law of demand. 

 
Figure 11: Relationship between price, quantity and total 

revenue; price in dollars is shown on the x-axis; pairs 

(price, quantity) showed as black dots; pairs (price, total 

revenue) showed as blue dots 

Figure 11 further demonstrates that the total revenue 

increase with price decrease and for this product, the 

maximum total revenue happens when 𝑙𝑛𝑃 is within its 

lowest quantile (when 𝑃 is low) as in the upper left corner 

range. It is noteworthy that based on the dataset we have; 

this product is still within the elastic demand regime as 

seen in Figure 1. Continue to decrease price can push 

elasticity reach -1 and drive the total revenue up to its 

highest value.  

Therefore, for this product, we could decrease the selling 

price which will help increase the quantity sold and from 

there the maximum total revenue point starts to build. 
Recall, that one maximizes total revenue when price 

elasticity equals -1. A note of care here, we are talking 

only about the total revenue function (defined as price 

times quantity sold) and not about profitability (defined as 

total revenues minus all costs). 

In this paper, by using the QQR model for each product 

(only 104 observations per product), we have not been 

able to show all its benefits. However, given the authors’ 

experience working with several other datasets with much 

richer dynamics (volatility) and most importantly, with 

more observations, we believe that the benefit that the 

QQR model is capable to provide significant information 
that other methods are not able to provide. The QQR 

results can help marketers to establish better strategies 

depending on current prices and observed dynamics 

between units sold and prices.  
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4.3 Ordinary Least Squares (OLS) and 

Gravity Center Regression (GCR) 

Comparison 
Continuing the example presented in the previous section, 

we present the results obtained with the GCR model. We 

perform a fourth order partition of the joint distribution 

between 𝑙𝑛𝑃 on the x-axis and 𝑙𝑛𝑄 on the y-axis, 

following Viole (2016)[15]. In Figure 12, the large pink 

dots are the pairs of (𝑙𝑛𝑃, 𝑙𝑛𝑄) obtained iteratively from 
the diverging lower partial moment (DLPM) and 

diverging upper partial moment (DUPM) quadrants to be 

consistent with the law of demand (the price – quantity 

relationship is negative, i.e. negative price elasticity). This 

methodology provides us with the benefit that in each 

iteration we only consider the data located in the relevant 

quadrants (DUPM and DLPM quadrants). In this way, 
unlike OLS linear regression model, the elasticity output 

from GCR model always follows the law of demand. In 

this case, elasticity based on the GCR model is -2.832 

(compared to -2.243 from the OLS results).  

 
Figure 12: Visualization of DUPM and DLPM quadrants 

expanded. With 𝑙𝑛𝑃 in the x-axis and 𝑙𝑛𝑄 in the y-axis, 
fourth order partition (NNS order equals to 4); the blue 

dots are the pairs of (𝑙𝑛𝑃, 𝑙𝑛𝑄); the large pink dots are 

the pairs obtained iteratively from the DUPM and DLPM 

quadrants; red dots are from CUPM and CLPM 

quadrants; regression line shows in blue; Estimated 

elasticity equals to -2.832 compared with OLS -2.243. 

5. CONCLUSION 

Price elasticity of demand plays a fundamental role in 

marketing strategies. A decrease in price will typically 

encourage consumer to buy more of this product and vice 

versa. Applying to market promotions, the marketers 

should understand whether the price of a product is in the 

elastic or inelastic regions and to understand how 

elasticity changes under different current price condition 

are important when developing an effective marketing 

campaign.  

This paper shows how simple techniques can be used to 
eliminate measurement errors due to the presence of 

outliers or changes in EDRP’s regimes. We conclude that 

applying outlier and breakpoint detection methods before 

applying any method significantly improves the results.  

Our analysis is based on two years of weekly data 

(January 2016 to December 2017) for 340 Hair Care 

products sold in 11 retailers. We present four different 

econometric models: Ordinary Least Squares (OLS), 

Quantile Regression (QR), Quantile on Quantile 

Regression (QQR) and Gravity Center Regression (GCR), 

show their results and mentioned their main 

characteristics. The QQR model could catch the dynamic 
elasticity changes given each pair of price and quantity, 

and the GCR model is the only one providing consistent 

elasticity results that always follow the law of demand. 

We left for future research the inclusion of other 

important variables such as competitors’ prices. We are 

also committed to an ongoing process to improve the 

elasticity measurement process to yield more precise and 

accurate results that is necessary for enhancing our 

understanding of marketing strategies going forward. 
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